

Application Note V10 May 2019

ISOLATED DC-DC Converter EC2SANH SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Reported By
Research and Development Department	Enoch	Danny Jacky	Eunice
Quality Assurance Department	Ryan	Benny	

Application Note V10 May 2019

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	4
5. MAIN FEATURES AND FUNCTIONS	7
5.1 Operating Temperature Range	7
5.2 Output Short Circuit Protection	7
6. APPLICATIONS	7
6.1 Recommended Layout PCB Footprints	7
6.2 Power De-rating curves for EC2SANH Series	8
6.3 Efficiency vs. Load Curves	g
6.4 Input Capacitance at the Power Module	12
6.5 Test Set-Up	12
6.6 Output Ripple and Noise Measurement	12
6.7 Output Capacitance	13
7. SAFETY & EMC	13
7.1 Input Fusing and Safety Considerations.	13
7.2 EMC Considerations	13
8. PART NUMBER	20
9. MECHANICAL OUTLINE DIAGRAMS	20
9.1 Mechanical Outline Diagrams	20

Application Note V10 May 2019

1. Introduction

The EC2SANH series offer 2 watts of output power with Industry Standard Single-In-line Package in a 0.77 x 0.28 x 0.40inches(19.6x7.2 x 10.2mm). The EC2SANH series have a $\pm 10\%$ input voltage range of 5Vdc \cdot 12Vdc and 24Vdc and provide a unregulated output. This series are with features as miniature size, 3000VDC of isolation and allow an operating ambient temperature range of -40°C to 105°C with de-rating above 85°C . All models are very suitable for telecommunications, distributed power systems, battery operated equipment, industrial, portable equipment applications.

2. DC-DC Converter Features

- Industry Standard SIP-7 Packages
- Efficiency up to 88%
- 3000VDC Isolation
- Unregulated Outputs
- Industry Standard Pinout
- No Tantalum Capacitors inside

3. Electrical Block Diagram

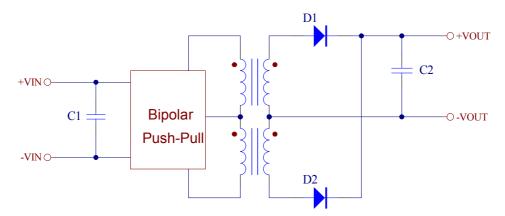


Figure 1 Electrical Block Diagram for Single output

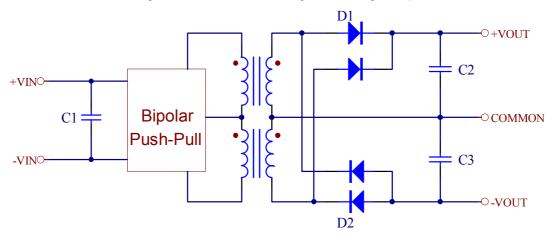


Figure 2 Electrical Block Diagram for Dual output

Application Note V10 May 2019

4. Technical Specifications (All specifications are typical at nominal input, full load at 25° C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage						
		5V _{in}	-0.7		5.5	
Continuous		12V _{in}	-0.7		13.2	Vdc
		$24V_{in}$	-0.7		26.4	
		5V _{in}			9	
Transient (100ms)	100ms	12V _{in}			18	Vdc
		$24V_{in}$			30	
Operating Ambient Temperature	With de-rating, above 85℃	All	-40		+105	$^{\circ}\!\mathbb{C}$
Storage Temperature		All	-55		+125	$^{\circ}\!\mathbb{C}$
Operating Case Temperature		All	-40		+120	$^{\circ}\!\mathbb{C}$
Input/Output Isolation Voltage	1 minute	All	3000			Vdc

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		5V _{in}	4.5	5	5.5	
Operating Input Voltage		12V _{in}	10.8	12	13.2	Vdc
		$24V_{in}$	21.6	24	26.4	
	100% Load, Vin=4.5V	5V _{in}		500		
Maximum Input Current	100% Load, Vin=10.8V	12V _{in}		210		mA
	100% Load, Vin=21.6V	24V _{in}		110		
		5V _{in}		45		
No-Load Input Current	V _{in} =Nominal input	12V _{in}		20		mA
		$24V_{in}$		10		
Inrush Current (I ² t)		All			0.01	A ² s

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		Vo=5Vdc	4.85	5.0	5.15	
		Vo=12Vdc	11.64	12	12.36) (al a
Output Valtage Set Deint	Vin=Nominal Vin , lo=lo.max, Ta=25°C	Vo=15Vdc	14.55	15	15.45	
Output Voltage Set Point	VIII-NOITIIIIai VIII, IO-IO.IIIax, 1a-23	Vo=±5Vdc	±4.85	±5.0	±5.15	Vdc
		Vo=±12Vdc	±11.64	±12	±12.36	
		Vo=±15Vdc	±14.55	±15	±15.45	
Output Voltage Regulation						
Load Regulation	lo=20% to 100%	All			±10	%
Line Regulation	For Vin Change of 1%	All			±1.2	%
Temperature Coefficient	Ta=-40°C to 85°C	All			±0.05	%/°C

Application Note V10 May 2019

PARAMETER	NOTES and CONDITIONS		Min.	Typical	Max.	Units
Output Voltage Ripple and Noise				<u>'</u>		•
Peak-to-Peak	Full Load, 20MHz bandwidth Output with 0.33uF Ceramic Capacitor	All			200	mV
		Vo=5Vdc	0		400	
		Vo=12Vdc	0		167	
On a ratio a Costanut Cosmant Dance		Vo=15Vdc	0		134	A
Operating Output Current Range		Vo=±5Vdc	0		83	mA
		Vo=±12Vdc	0		67	
		Vo=±15Vdc	0		200	
Over Load	Vin=Nominal Vin Output Voltage Within Vo Set Point ±5%	All	120			%
Output Voltage Balance	Vin=nominal, lo=lomax, Ta=25℃	Dual			±1.0	%
		Vo=5Vdc			220	
		Vo=12Vdc			220	
Maximum Output Capacitance	Full load	Vo=15Vdc			220	uF
waxiinum Output Capacitance	I uli loau	Vo=±5Vdc			100	ui
		Vo=±12Vdc			100	
		Vo=±15Vdc			100	

EFFICIENCY

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		EC2SA01NH		82		
		EC2SA02NH		84		
		EC2SA03NH		85		
		EC2SA04NH		85		
		EC2SA05NH		87		
		EC2SA06NH		83		
		EC2SA11NH		82		
		EC2SA12NH		87		
100% Load	Vin=Nominal Vin, lo=lo.max, Ta=25℃	EC2SA13NH		87		%
100 % Loau	VIII-INOITIIIIai VIII, 10-10.ITIAX, 1 a-25 (EC2SA14NH		86		/0
		EC2SA15NH		87		
		EC2SA16NH		84		
		EC2SA21NH		82		
		EC2SA22NH		87		
		EC2SA23NH		88		
		EC2SA24NH		87		
		EC2SA25NH		88		
		EC2SA26NH		83		

ISOLATION CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input to Output	1 minutes	All	3000			Vdc
Isolation Resistance		All	1000			$M\Omega$
Isolation Capacitance		All		18		pF

Application Note V10 May 2019

FEATURE CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Switching Frequency	Vin=Nominal Vin, Io=Io.max, Ta=25℃	All		60		KHz

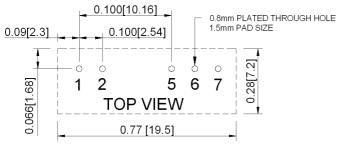
GENERAL SPECIFICATIONS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
IMTBE	lo=100%of lo.max;Ta=25 °C per MIL-HDBK-217F	All		3.3		M hours
Weight		All		2.7		Grams

Application Note V10 May 2019

5. Main Features and Functions *5.1 Operating Temperature Range*

The EC2SANH series converters can be operated by a wide ambient temperature range from -40 $^{\circ}$ C to 105 $^{\circ}$ C. The standard model has a plastic case and case temperature can not over 120 $^{\circ}$ C at normal operating.


5.2 Output Short Circuit Protection

All different voltage models have a short-circuit protection (Continuous, self-recovery). Please notice this condition and avoid output short as much as possible.

6. Applications


6.1 Recommended Layout PCB Footprints

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as Figure 3.

Note: Dimensions are in inches(millimeters)

Lead Free Wave Soldering Profile

Note:

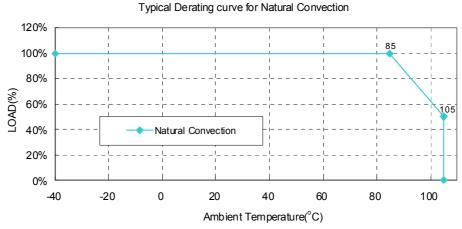
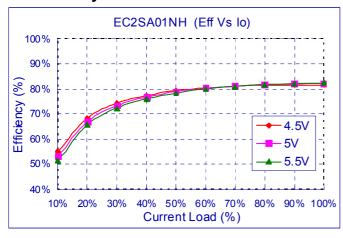
- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 $^{\circ}$ C/Sec (From 50 $^{\circ}$ C to 100 $^{\circ}$ C)
- 3. Soaking temperature: $0.5 \,^{\circ}\text{C/Sec}$ (From $100 \,^{\circ}\text{C}$ to $130 \,^{\circ}\text{C}$), 60 ± 20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 $^{\circ}$ C/Sec (From 260 $^{\circ}$ C to 150 $^{\circ}$ C)

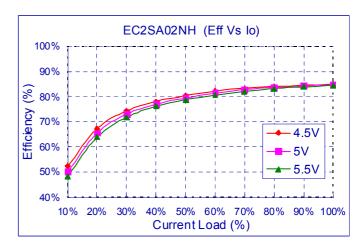
Figure 3 Recommended PCB Layout Footprints and Soldering Profile

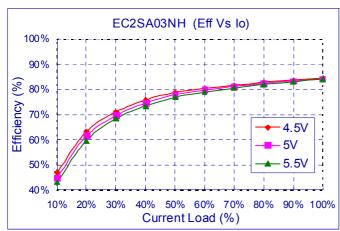
Application Note V10 May 2019

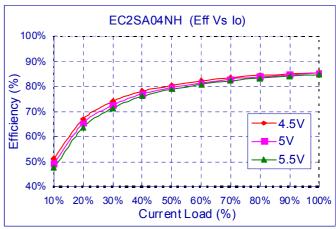
6.2 Power De-rating curves for EC2SANH Series

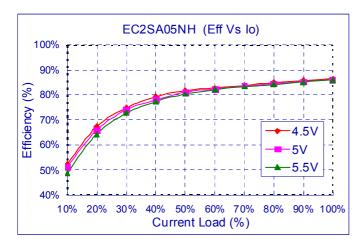
Operating Ambient temperature Range: -40° C ~ 105° C Maximum case temperature under any operating condition should not be exceed 120° C.

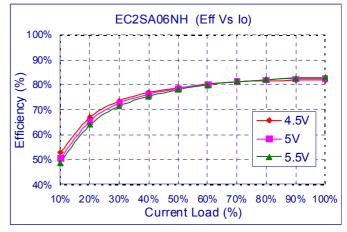



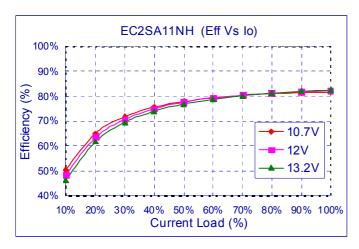

Figure 4 Typical Power De-rating Curve for EC2SANH Series

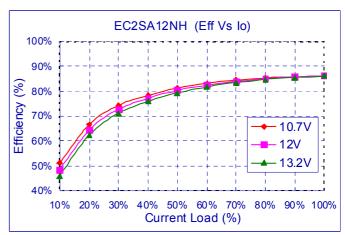


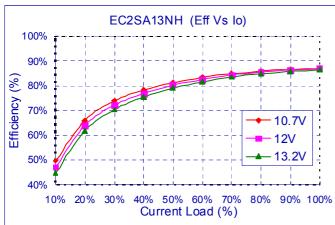

Application Note V10 May 2019

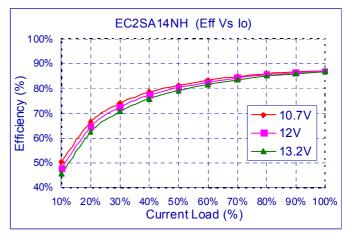

6.3 Efficiency vs. Load Curves

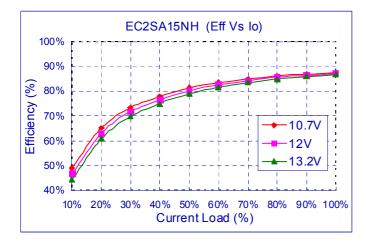


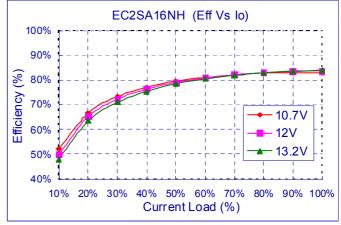


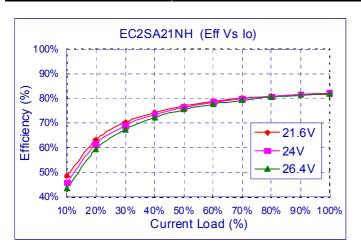


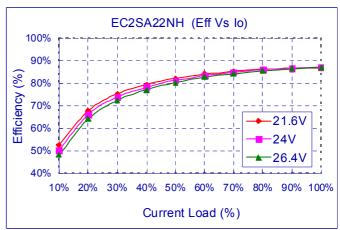


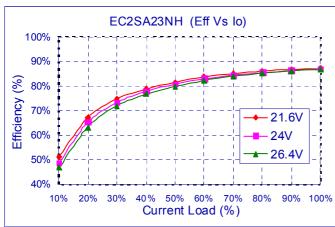


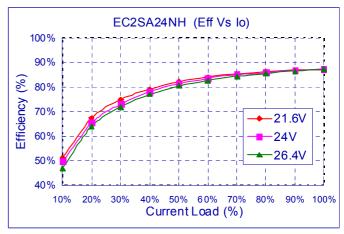


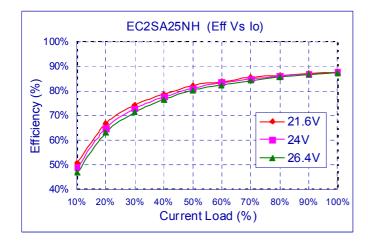


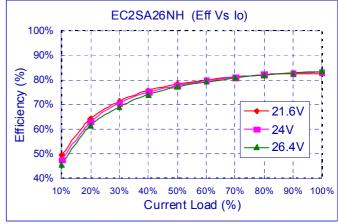


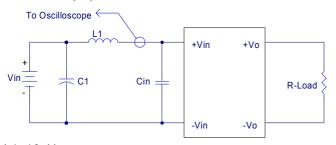












Application Note V10 May 2019

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. The input capacitors (Cin) are recommended by low ESR capacitors of 2.2uF for 5Vin and 12Vin models or 1uF for 24Vin models. Testing Circuit for reflected ripple current as shown in Figure 5 represents typical measurement methods. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1).

L1: 12uH

C1: 2.2uF Tantalum capacitor for 5Vin and 12Vin models or 1uF Tantalum capacitor for 24Vin models

Cin: None

Figure 5 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure6 and 7. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Vin \times Iin} \times 100\%$$

Where: Vo is output voltage,

lo is output current,

Vin is input voltage,

lin is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{ML}}{V_{ML}} \times 100\%$$

Where: V_{FL} is the output voltage at full load

V_{ML} is the output voltage at 20% full load

Line regulation is per 1.0% change in input voltage. The value of line regulation is defined as:

$$\textit{Line.reg} = \frac{\frac{\textit{V}_{\textit{HL}} - \textit{V}_{\textit{LL}}}{\textit{V}_{\textit{NOM}}} \times 100\%}{20}$$

Where: V_{HL} is the output voltage of maximum input voltage at full load.

 V_{LL} is the output voltage of minimum input voltage at full load.

 V_{NOM} is the output voltage of nominal input voltage at full load.

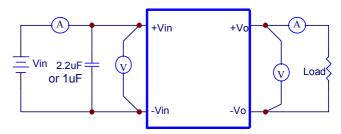


Figure 6 EC2SANH Series Single output Test Setup

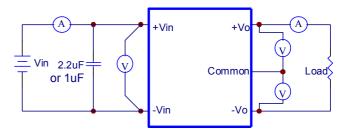


Figure7 EC2SANH Series Dual output Test Setup

6.6 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in Figure8 and 9. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from D.C. to 20MHz Band Width. The output ripple/noise is measured with 0.33uF ceramic capacitor across output. The ripple and noise is measured by BNC at 50mm to 75mm (2" to 3") from the module.

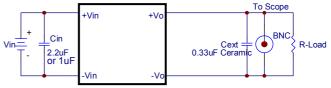


Figure 8 Output Voltage Ripple and Noise Measurement Set-up for Single Output

Application Note V10 May 2019

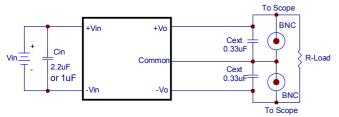


Figure9 Output Voltage Ripple and Noise Measurement Set-up for Dual output

6.7 Output Capacitance

The EC2SANH series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC2SANH series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a time delay fuse 1A for 5Vin models, 500mA for 12Vin models and 250mA for 24Vin models. Figure10 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.



Figure 10 Input Protection

7.2 EMC Considerations

EMI Test standard: EN55032 Class A and Class B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

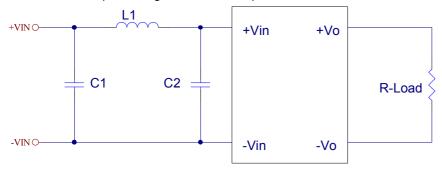
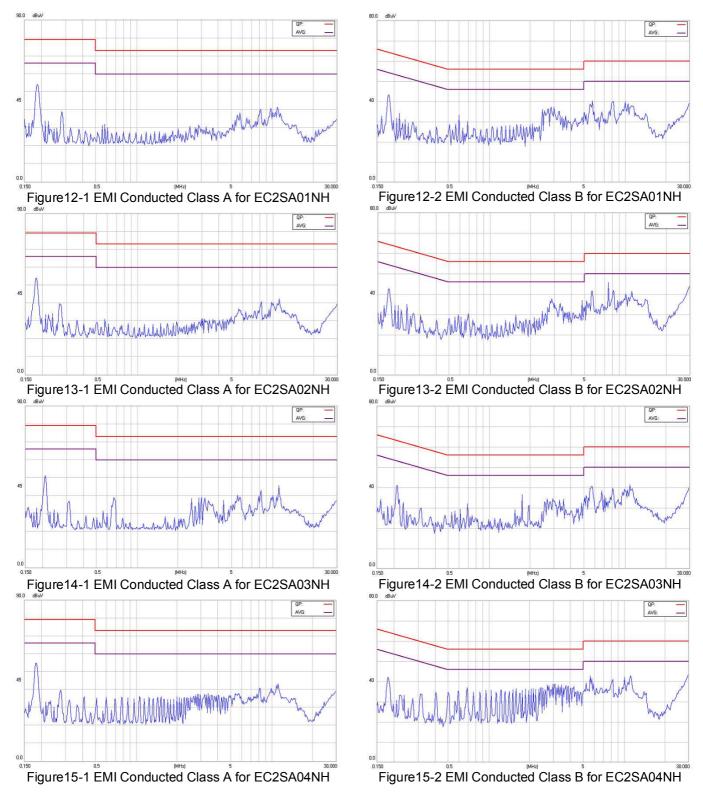
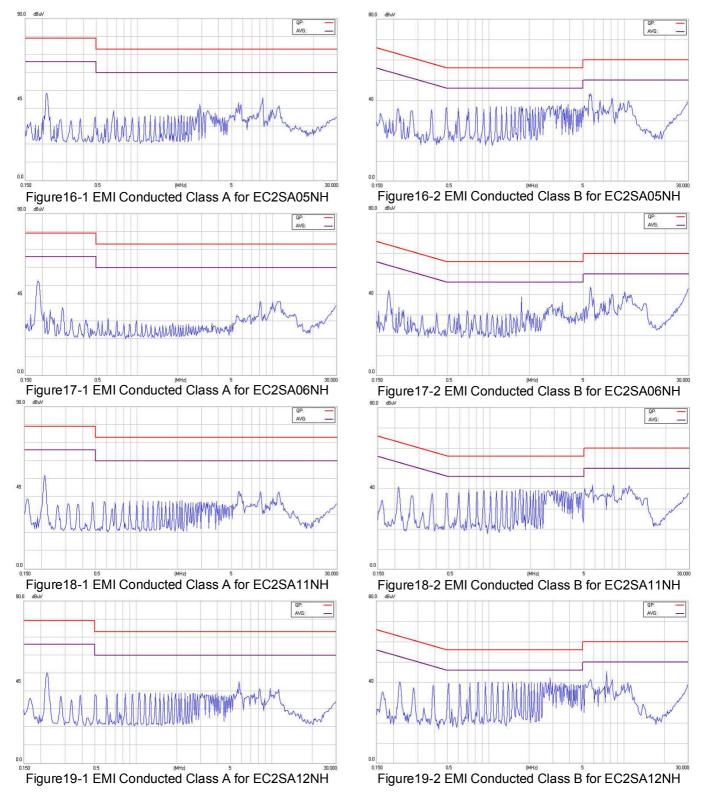


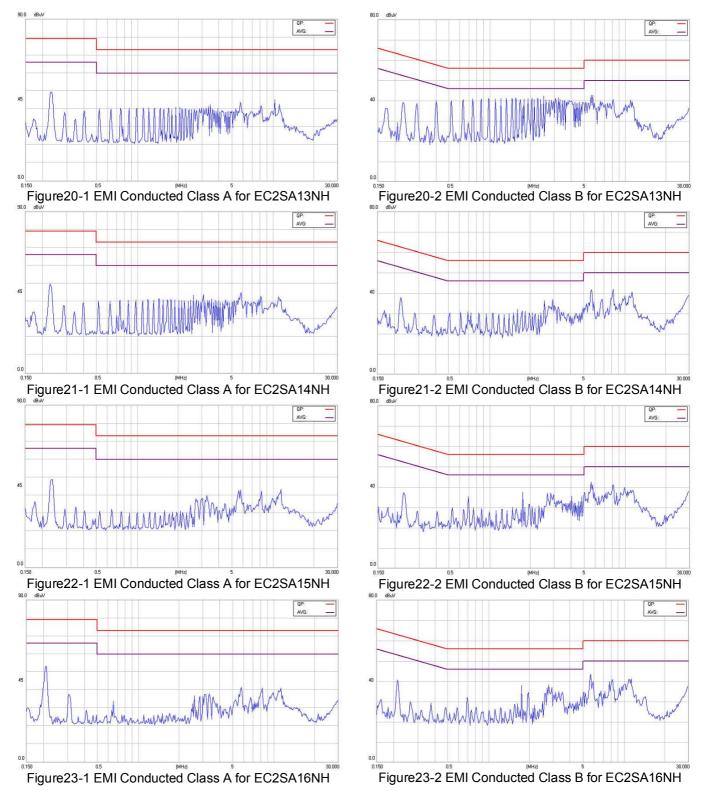
Figure 11 Connection circuit for conducted EMI testing

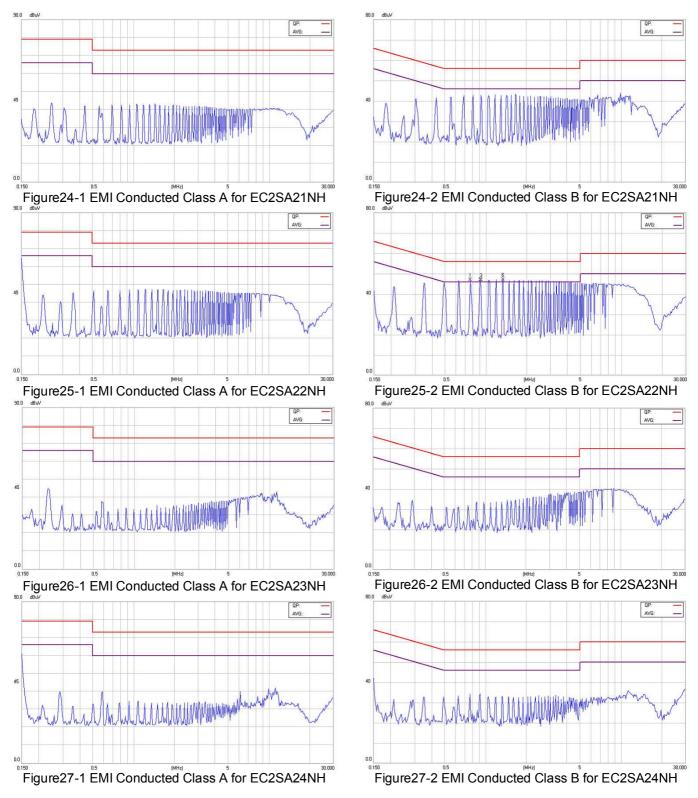

Application Note V10 May 2019

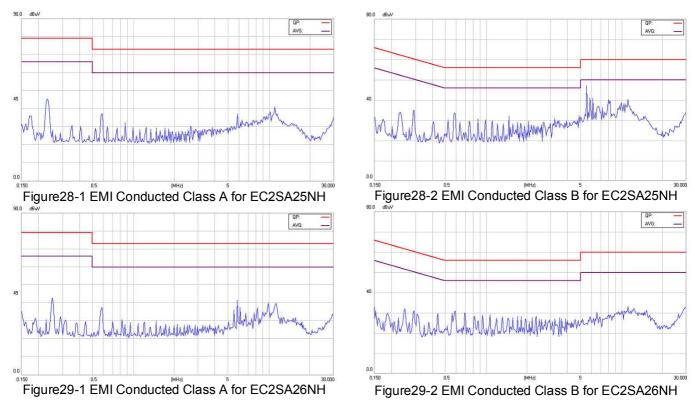
		EN55032 class A		EN55032 class B			
Model No.	C1	C2	L1	C1	C2	L1	
EC2SA01NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA02NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA03NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA04NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA05NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA06NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA11NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA12NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA13NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA14NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA15NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA16NH	4.7uF/50V 1812	NC	2.2uH	10uF/25V 1812	NC	4.7uH	
EC2SA21NH	4.7uF/50V 1812	4.7uF/50V 1812	2.2uH	6.8uF/50V 1812	6.8uF/50V 1812	4.7uH	
EC2SA22NH	4.7uF/50V 1812	4.7uF/50V 1812	2.2uH	6.8uF/50V 1812	6.8uF/50V 1812	4.7uH	
EC2SA23NH	4.7uF/50V 1812	4.7uF/50V 1812	2.2uH	6.8uF/50V 1812	6.8uF/50V 1812	4.7uH	
EC2SA24NH	4.7uF/50V 1812	4.7uF/50V 1812	2.2uH	6.8uF/50V 1812	6.8uF/50V 1812	4.7uH	
EC2SA25NH	4.7uF/50V 1812	4.7uF/50V 1812	2.2uH	6.8uF/50V 1812	6.8uF/50V 1812	4.7uH	
EC2SA26NH	4.7uF/50V 1812	4.7uF/50V 1812	2.2uH	6.8uF/50V 1812	6.8uF/50V 1812	4.7uH	

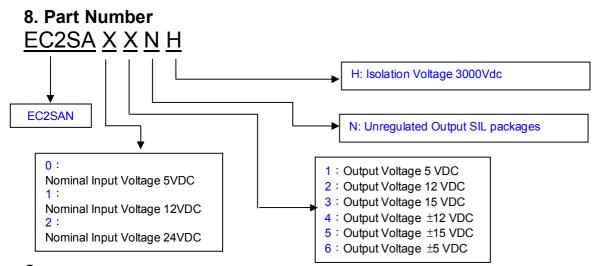

Note: All of capacitors are ceramic capacitors.

2.2uH (P/N: SCD0403T-2R2M-N, CHILISIN), 4.7uH (P/N: SCD0403T-4R7M-N, CHILISIN)









Application Note V10 May 2019

9. Mechanical Outline Diagrams

9.1 Mechanical Outline Diagrams

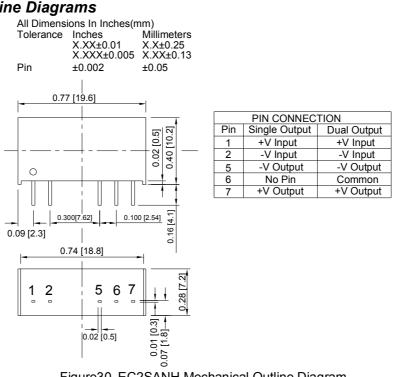


Figure 30 EC2SANH Mechanical Outline Diagram

CINCON ELECTRONICS CO., LTD.

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd., Taipei, Taiwan

Tel: 886-2-27086210 Fax: 886-2-27029852

E-mail: support@cincon.com.tw
Web Site: http://www.cincon.com.com

Factory:

No. 8-1, Fu Kong Rd., Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan

Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon American Office:

7770 Telegragh Road, Suite 219, Ventura. CA 93004

Tel: 805-647-3006 Fax: 805-659-3372

E-mail: escherb@cincon.com