

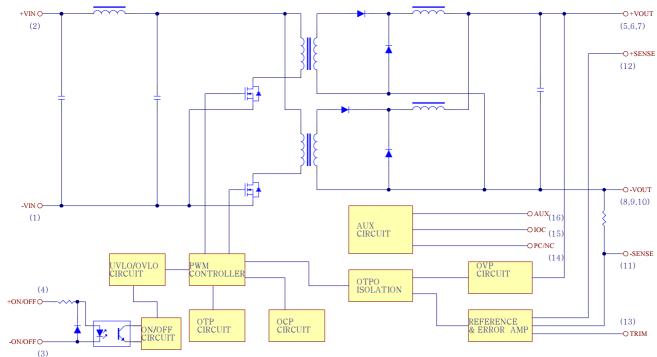
ISOLATED DC-DC CONVERTER CFB600 SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Written By
Research and Development Department	Enoch	Danny/Johnny Jacky	Joyce
Quality Assurance Department	Ryan	Benny	

Contents

1. Introduction	3
2. DC-DC Converter Features	3
3. Electrical Block Diagram	3
4. Technical Specifications	4
5. Main Features and Functions	
5.1 Operating Temperature Range	8
5.2 Output Voltage Adjustment	
5.3 Over Current Protection	
5.4 Output Over Voltage Protection	8
5.5 Remote On/Off	
5.6 UVLO&OVLO (Under/Over Voltage Lock Out)	8
5.7 Over Temperature Protection	8
6. Applications	8
6.1 Recommended Layout, PCB Footprint and Soldering Information	8
6.2 Convection Requirements for Cooling	9
6.3 Thermal Considerations	9
6.4 Power De-Rating	
6.5 Full Brick Heat Sinks:	
6.6 Efficiency VS. Load	
6.7 Test Set-Up	
6.8 Output Voltage Adjustment	
6.9 Output Remote Sensing	
6.10 Output Ripple and Noise	
6.11 Output Capacitance	
6.12 Parallel Operation	
6.13 IOG Signal	
6.14 Auxiliary Power for Output Signal	
6.15 On/Off Control	
7. Safety & EMC	
7.1 Input Fusing and Safety Considerations	
7.2 EMC Considerations	
8. Part Number	21
9. Mechanical Specifications	21
9.1 Mechanical Outline Diagrams	21



1. Introduction

This specification describes the features and functions of Cincon's CFB600 series of isolated DC-DC Converters. These are highly efficient, reliable and compact, high power density, single output DC/DC converters. The modules can be used in the field of telecommunications, data communications, wireless communications, servers, base station, etc. The CFB600 series can deliver up to 50A output current and provide a precisely regulated output voltage over a wide range of 18-36 and 36-75VDC. The modules can achieve high efficiency up to 92%. The module offers direct cooling of dissipative components for excellent thermal performance. Standard features include isolated remote on/off (positive or negative), remote sense, output voltage adjustment, over voltage, over current and over temperature protection. Parallel operation is also optional.

2. DC-DC Converter Features

- 600-700W Isolated Output
- Efficiency to 92%
- Fixed Switching Frequency
- Input Under-Voltage Protection
- Over Temperature Protection
- Over Voltage/Current Protection
- Remote On/Off
- Industry Full-Brick Package
- Fully Isolated 1500VDC
- IEC/EN/UL 62368-1 Approval

3. Electrical Block Diagram

Electrical Block Diagram for CFB600 series Modules

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25°C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage						
		24SXX	-0.3		36	V
Continuous		48SXX -0.3	75	V _{dc}		
Operating Case Temperature		All	-40		100	°C
Storage Temperature		All	-55		105	°C
Isolation Voltage	1 minute; input/output, input/case, output/case, input/remote, output/remote	All	1500			V _{dc}

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		24SXX	18	24	36	
Operating Input Voltage		48SXX	36	48	75	V _{dc}
Input Under Voltage Lock	cout					
Turn-On Voltage		24SXX	16	17	18	V _{dc}
Threshold		48SXX	34	35	36	V dc
Turn-Off Voltage		24SXX	15	16	17	Vdc
Threshold		48SXX	32	33	34	v ac
Lockout Hysteresis		24SXX		1.0		Vdc
Voltage		48SXX		2.0		v ac
Input Over Voltage Locko	put					
Turn-On Voltage		24SXX	37	38	39	V _{dc}
Threshold		48SXX	76	77	78	
Turn-Off Voltage		24SXX	39	40	42	Vdc
Threshold		48SXX	79	80	81	Vac
Lockout Hysteresis		24SXX		2.0		V _{dc}
Voltage		48SXX		3.0		v ac
Maximum Input Current	100% Load, V _{in} =18V	24SXX		37.7		A
	100% Load, V _{in} =36V	48SXX		21.7		~
		24S12		150		
		24S24		150		
No-Load Input Current		24S28		150		mA
		24S32		150		
		24S48		200		

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		48S12		90		
		48S24		100		
		48S28		105		mA
		48S32		90		
		48S48		130		
Inrush Current (I ² t)		All			1.0	A ² s
OUTPUT CHARACTE	RISTICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		Vo=12V	11.88	12.00	12.12	
		Vo=24V	23.76	24.00	24.24	
Output Voltage Set Point	Vin=Nominal Vin, I₀ = I₀_max, Tc=25℃	Vo=28V	27.72	28.00	28.28	V _{dc}
FOIL		Vo=32V	31.68	32.00	32.32	
		Vo=48V	47.52	48.00	48.48	
Output Voltage Regulation	n			•		
Load Regulation	Io=Io_min to Io_max	All			±0.5	%
Line Regulation	V _{in} =low line to high line	All			±0.2	%
Temperature Coefficient	Tc=-40°C to 100°C	All			±0.03	%/ °C
Output Voltage Ripple and	d Noise			•		
		Vo=12V			120	
	20MHz bandwidth, Full load, 10uF tantalum and 1.0uF ceramic capacitors (48V: 10uF aluminum	Vo=24V			240	
Peak-to-Peak		Vo=28V			280	mV
	and 1.0uF ceramic capacitors)	Vo=32V			320	
		Vo=48V			480	
		Vo=12V			60	
	20MHz bandwidth, Full load, 10uF	Vo=24V			100	
RMS	tantalum and 1.0uF ceramic capacitors (48V: 10uF aluminum	Vo=28V			100	mV
	and 1.0uF ceramic capacitors)	Vo=32V			120	
		Vo=48V			200	
		24S28	0		21.5	
		48S28	0		25	
Operating Output		Vo=12V	0		50	
Current Range		Vo=24V	0		25	A
-		Vo=32V	0		19	
		Vo=48V	0		12.5	
Output DC Current Limit Inception	Output Voltage=90% Nominal Output Voltage	All	110		150	%
•	Vout ready: low level, sink current	All			20	mA
Power Good Signal (IOG)	Vout not ready: open drain output, applied voltage	All			50	V
		24S32	470		70000	
Output Capacitance	Full load (resistive)	Vo=12V	470		10000	uF
		Others	470		5000	

DYNAMIC CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Tr	ansient					
Step Change in Output Current	di/dt=0.1A/us, Load change from 75% to 100% to 75% of lo max.	All		±3	±5	%
Setting Time (within 1% Vout nominal)	di/dt=0.1A/us	All			500	us
Turn-On Delay and Rise T	īme					
Turn-On Delay Time, From On/Off Control	V _{on/off} to 10%V _{o_set}	All			75	ms
Turn-On Delay Time, From Input	V _{in_min} to 10%V _{o_set}	All			250	ms
Output Voltage Rise Time	10%V₀_set to 90%v₀_set	All			50	ms

EFFICIENCY

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		24S12		88		
		24S24		90		
		24S28		90		
4000/ 1 1		24S32		91		
		24S48		91		%
100% Load		48S12		90		70
		48S24		92		
		48S28		91		
		48S32		92		
		48S48		92		

ISOLATION CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Isolation Voltage	1 minute; input/output, input/case, output/case, input/remote, output/remote	All			1500	V _{dc}
Isolation Resistance		All	10			MΩ
Isolation Capacitance		All		4000		pF
FEATURE CHARAC	TERISTICS					
PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		48S12		300		
Quitabina Francisca		48S28		300		
Switching Frequency		48S32		300		KHz
		Others		250		
On/Off Control Negative F	Remote On/Off Logic	1		1 1		
Logic Low (Module Off)		All	0		0.01	mA
Logic High (Module On)		All	1.0		10	mA
On/Off Control Positive Re	emote On/Off Logic					
Logic High (Module Off)		All	1.0		10	mA
Logic Low (Module On)		All	0		0.01	mA

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Auxiliary Output Voltage		All	7	10	13	V
Auxiliary Output Current		All			20	mA
Load Share Accuracy (50%-100% load)		All	-10		+10	%
Off Converter Input Current	Shutdown input idle current	All			50	mA
Output Voltage Trim Range	Pout=max rated power	All	60		110	%
Output Over Voltage Protection		All	115	125	140	%
Over-Temperature Shutdown		All		110		°C

GENERAL SPECIFICATIONS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
MTBF	I₀=100% of I₀_max: Ta=25℃ per MIL- HDBK-217F	All		450		K hours
Weight		All		220		grams

5. Main Features and Functions

5.1 Operating Temperature Range

The CFB600 series converters can be operated within a wide case temperature range of -40 $^\circ C$ to 100 $^\circ C$. Consideration must be given to the de-rating curves when ascertaining maximum power that can be drawn from the converter. The maximum power drawn from full brick models is influenced by usual factors, such as:

- Input voltage range
- Output load current
- Forced air or natural convection

5.2 Output Voltage Adjustment

Section 6.8 describes in detail how to trim the output voltage with respect to its set point. The output voltage on all models is adjustable within the range of 60% to 110%.

5.3 Over Current Protection

The converter is protected against over current or short circuit conditions. At the instance of current-limit inception, the module enters a constant current mode of operation. While the fault condition exists, the module will remain in this constant current mode, and can remain in this mode until the fault is cleared. The unit operates normally once the output current is reduced back into its specified range.

5.4 Output Over Voltage Protection

The converter is protected against output over voltage conditions. When the output voltage is higher than the specified range, the module enters a hiccup mode of operation.

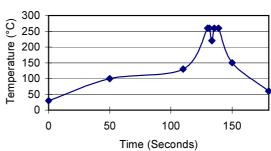
5.5 Remote On/Off

The On/Off input pins permit the user to turn the power module on or off via a system signal from the primary side or the secondary side. Two remote on/off options are available. Negative logic turns the module on as long as a current (1-10mA) is flowing between +on/off and -on/off and inactive when no current is flowing. Positive logic turns the module off as long as a current (1-10mA) is flowing between +on/off and -on/off and active when no current is flowing.

5.6 UVLO&OVLO (Under/Over Voltage Lock Out)

Input under/over voltage lockout is standard with this converter. At input voltages below/beyond the input under voltage lockout limit, the module operation is disabled.

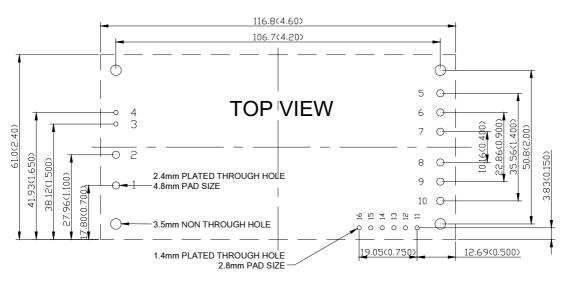
5.7 Over Temperature Protection


These modules have an over temperature protection circuit to safeguard against thermal damage. When the case temperature rises above over temperature shutdown threshold, the converter will shut down to protect it from overheating. The module will automatically restart after it cools down.

6. Applications

6.1 Recommended Layout, PCB Footprint and Soldering Information

The system designer or end user must ensure that metal and other components in the vicinity of the converter meet the spacing requirements for which the system is approved. Low resistance and inductance PCB layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended soldering profile and PCB layout are shown below.


Lead Free Wave Soldering Profile

Note :

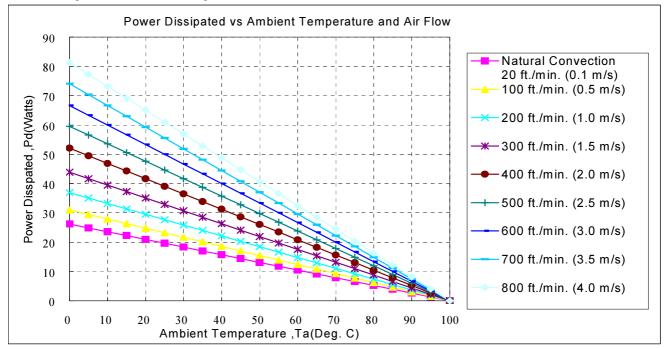
- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 $^{\circ}$ C/Sec (From 50 $^{\circ}$ C to 100 $^{\circ}$ C)
- 3. Soaking temperature: 0.5 $^\circ \rm C/Sec$ (From 100 $^\circ \rm C$ to 130 $^\circ \rm C$), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 $^\circ C/Sec$ (From 260 $^\circ C$ to 150 $^\circ C)$

Recommend PCB Pad layout

6.2 Convection Requirements for Cooling

To predict the approximate cooling needed for the full brick module, refer to the power de-rating curves in section 6.4. These de-rating curves are approximations of the ambient temperatures and airflows required to keep the power module temperature below its maximum rating. Once the module is assembled in the actual system, the module's temperature should be monitored to ensure it does not exceed 100° C as being measured at the center of the top of the case (thus verifying proper cooling).

6.3 Thermal Considerations


The power module operates in a variety of thermal environments; however, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. The test data is presented in section **6.4**. The power output of the module should not be allowed to exceed rated power ($V_{o_set} \times I_{o_max}$).

6.4 Power De-Rating

The operating case temperature range of CFB600 series is -40°C to +100°C. When operating the CFB600 series, proper de-rating or cooling is needed. The maximum case temperature under any operating condition should not be exceeded 100° C.

The following curve is the de-rating curve of CFB600 series without heat sink.

Example:

What is the minimum airflow necessary for a CFB600-48S12 operating at nominal line, an output current of 30A, and a maximum ambient temperature of 40° C

Solution: Given:

Vin=48Vdc, Vo=12Vdc, Io=30A

Determine Power dissipation (P_d):

Pd =Pi-Po=Po(1-η)/η

Pd =12×30×(1-0.9)/0.9=40Watts

Determine airflow:

Given: P_d =40W and Ta=40 $^\circ\!\mathrm{C}$

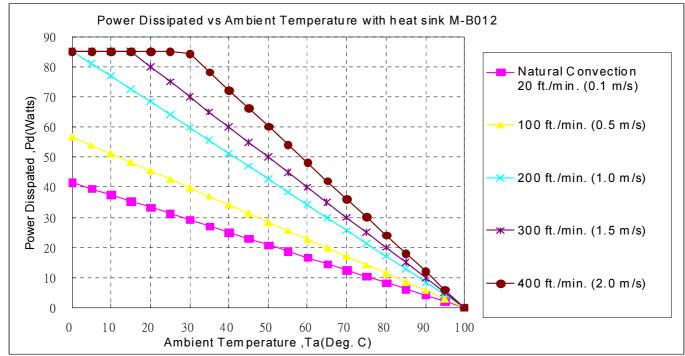
Check above Power de-rating curve: minimum airflow= 700 ft./min.

Verifying: The maximum temperature rise

∆T = Pd × Rca=40×1.35=54°C

The maximum case temperature Tc=Ta+ Δ T=94°C <100°C

Where:


The R_{ca} is thermal resistance from case to ambience.

The Ta is ambient temperature and the Tc is case temperature.

Chart of Thermal Resistance vs Air Flow

AIR FLOW RATE	TYPICAL Rca
Natural Convection 20ft./min. (0.1m/s)	3.82 °C/W
100 ft./min. (0.5m/s)	3.23 °C/W
200 ft./min. (1.0m/s)	2.71 °C/W
300 ft./min. (1.5m/s)	2.28 °C/W
400 ft./min. (2.0m/s)	1.92 °C/W
500 ft./min. (2.5m/s)	1.68 °C/W
600 ft./min. (3.0m/s)	1.50 °C/W
700 ft./min. (3.5m/s)	1.35 °C/W
800 ft./min. (4.0m/s)	1.23 °C/W

The following curve is the de-rating curve of CFB600 series with heat sink FBL254 (M-B012).

Forced Convection Power De-rating with Heat Sink FBL254 (M-B012)

Example:

What is the minimum airflow necessary for a CFB600-48S12 operating at nominal line, an output current of 50A, and a maximum ambient temperature of 40 $^\circ\!C$

Solution:

Given:

 V_{in} =48 V_{dc} , Vo=12 V_{dc} , Io=50A

Determine Power dissipation (Pd):

Pd=Pi-Po=Po(1-η)/η

Pd=12x50x(1-0.9)/0.9=66.7Watts (Chart of Thermal Resistance vs Air Flow)

Determine airflow:

Given: Pd=66.7W and Ta=40°C

Check above Power de-rating curve:

minimum airflow= 400 ft./min.

Verifying:

The maximum temperature rise △T = Pd × Rca=66.7×0.83=55.4℃

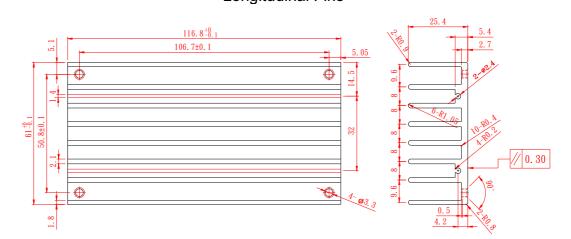
The maximum case temperature Tc=Ta+∆T=95.4°C <100°C

Where:

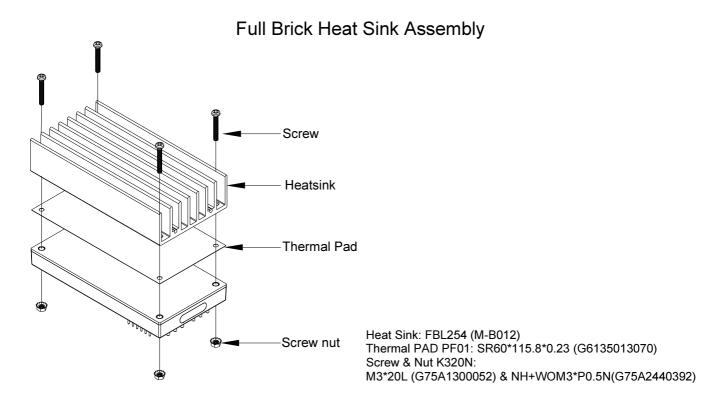
The Rca is thermal resistance from case to ambience.

The Ta is ambient temperature and the Tc is case temperature.

AIR FLOW RATE	TYPICAL Rca
Natural Convection 20ft./min. (0.1m/s)	2.4 °C/W
100 ft./min. (0.5m/s)	1.76 °C/W
200 ft./min. (1.0m/s)	1.17 °C/W
300 ft./min. (1.5m/s)	1.00 °C/W
400 ft./min. (2.0m/s)	0.83 °C/W

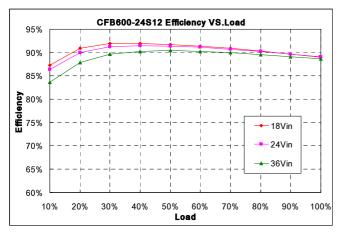


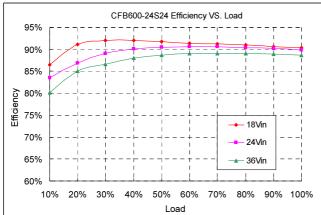
6.5 Full Brick Heat Sinks:

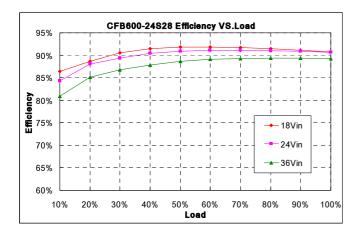

Heat-sink FBL254 (M-B012)

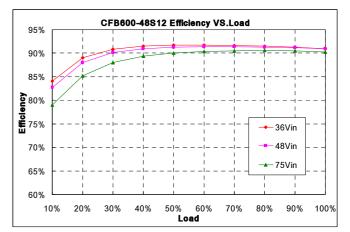
All Dimension In mm

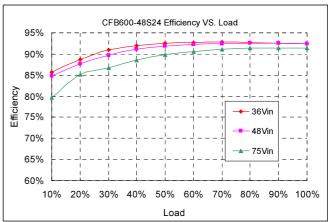
Longitudinal Fins

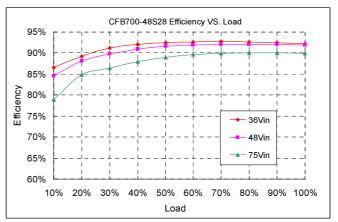



Heat Sink (Clear Mounting Inserts Φ3.3mm Through): 116.8*61*25.4 FBL254 (M-B012) G6620090204 Thermal PAD PF01: SR60*115.8*0.23 (G6135013070) Screw Nut K320N: M3*20L (G75A1300052) & NH+WOM3*P0.5N (G75A2440392)






6.6 Efficiency VS. Load

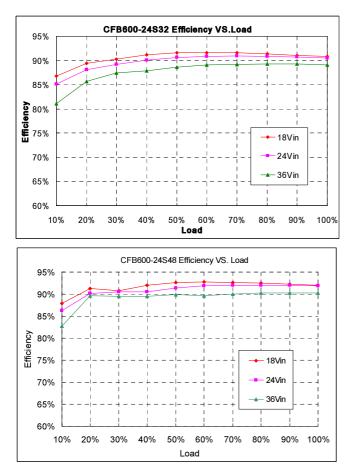


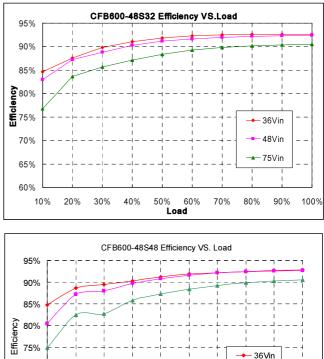
70%

65%

60%

10%


30%


20%

40%

50% 60%

Load

36Vin

48Vin

75Vin

90% 100%

80%

70%

6.7 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown below. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. we can calculate:

- Efficiency
- Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Vin \times Iin} \times 100\%$$

Where:

Vo is output voltage,

Io is output current,

Vin is input voltage,

l_{in} is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where:

 V_{FL} is the output voltage at full load

 V_{NL} is the output voltage at no load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

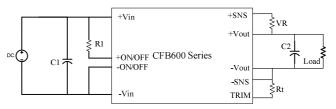
Where: V_{HL} is the output voltage of maximum input voltage at full load. V_{LL} is the output voltage of minimum input voltage at full load.

CFB600 Series Test Setup

Recommend C1and C2 Value

C1: 1000uF/50V for CFB600-24S32, 220uF/100V for other Models

C2:470uF/100V


For CFB600 series it's necessary to connect the input electrolytic capacitor C1 with low ESR to prevent the effective of input line inductance to the DC/DC converter.

For stable operation, connect a low impedance electrolytic capacitor C2 in the output terminals. When operated at lower temperature than -20 $^{\circ}$ C, increasing

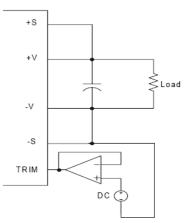
the C2 capacitance with three or four times more than the recommended value.

6.8 Output Voltage Adjustment

The Trim input permits the user to adjust the output voltage up or down according to the trim range specification (60% to 110% of nominal output). This is accomplished by connecting an external resistor between the +Vout and +Sense pin for trim up and between the TRIM and –Sense pin for trim down, see Figure

Output voltage trim circuit configuration

The Trim pin should be left open if trimming is not being used. The output voltage can be determined by the following equations:


$$Vf = \frac{1.24 \times (\frac{Rt \times 33}{Rt + 33})}{7.68 + \frac{Rt \times 33}{Rt + 33}}$$

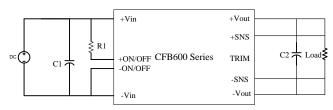
$$Vout = (Vo + VR) \times Vf$$

Unit: KΩ

Vo: Nominal Output Voltage Recommend Rt=6.8K Ω

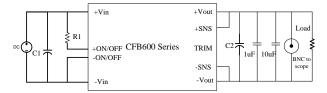
The output voltage can also be adjustment by using external DC voltage

Output Voltage = TRIM Terminal Voltage * Nominal Output Voltage



6.9 Output Remote Sensing

The CFB600 series converter has the capability to remotely sense both lines of its output. This feature moves the effective output voltage regulation point from the output of the unit to the point of connection of the remote sense pins. This feature automatically adjusts the real output voltage of the CFB600 series in order to compensate for voltage drops in distribution and maintain a regulated voltage at the point of load. The remote-sense voltage range is: $[(+V_{out}) - (-V_{out})] - [(+Sense) - (-Sense)] \leq 10\%$ of $V_{o_nominal}$


If the remote sense feature is not to be used, the sense pins should be connected locally. The +Sense pin should be connected to the +Vout pin at the module and the -Sense pin should be connected to the -Vout pin at the module.

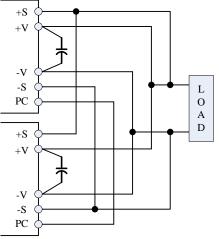
This is shown in the schematic below.

Note: Although the output voltage can be increased by both the remote sense and by the trim, the maximum increase for the output voltage is not the sum of both. The maximum increase is the larger of either the remote sense or the trim. The amount of power delivered by the module is defined as the voltage at the output terminals multiplied by the output current. When using remote sense and trim, the output voltage of the module can be increased and consequently increase the power output of the module if output current remains unchanged. Care should be taken to ensure that the maximum output power of the module remains at or below the maximum rated power (Maximum rated power = V_{o,set} x l_{o,max})

6.10 Output Ripple and Noise

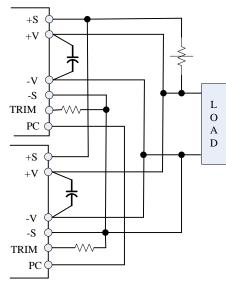
Output ripple and noise is measured with 10uF aluminum and 1.0uF ceramic capacitors for 48V, 1.0uF ceramic and 10uF solid tantalum capacitors for other modules across the output.

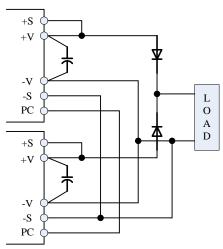
6.11 Output Capacitance

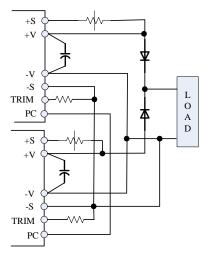

The CFB600 series converters provide unconditional stability with or without external capacitors. For good transient response, low ESR output capacitors should be located close to the point of load. PCB design emphasizes low resistance and inductance tracks in consideration of high current applications. Output capacitors with their associated ESR values have an impact on loop stability and bandwidth. The minimum output capacitance when operating below -20°C and the absolute maximum value of CFB600 series output capacitance to see technical specifications.

6.12 Parallel Operation

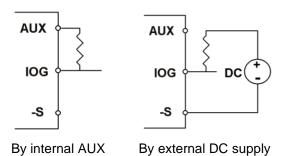
The CFB600 series are also designed for parallel operation. When paralleled, the load current can be equally shared between the modules by connecting the PC pins together.


There are two different parallel operations for CFB600 series, one is parallel operation when load can't be supplied by only one power unit; the other is the N+1 redundant operation which is high reliable for load of N units by using N+1 units.




(b) Parallel operation with programmed and adjustable output

(c) N+1 redundant connection



(d) N+1 redundant connection with programmed output and adjustable output voltage

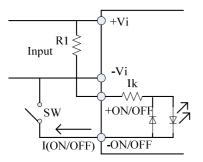
6.13 IOG Signal

Normal and abnormal operation of the converter can be monitored by using the I.O.G signal. Output of this signal monitor is located at the secondary side and is open collector output, you can use the signal by the internal aux power supply or the the external DC supply as the following figures. the ground reference is the –Sense.

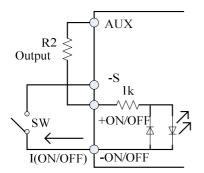
This signal is LOW when the converter is normally operating and HIGH when the converter is disabled or when the converter is abnormally operating.

6.14 Auxiliary Power for Output Signal

The auxiliary power supply output is within 7-13V with maximum current of 20 mA. Ground reference is the - sense Pin.



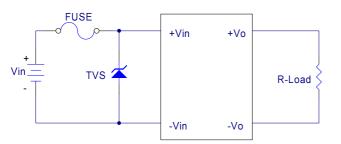
6.15 On/Off Control


The converter's On/Off can be controlled from the input side or the output side.

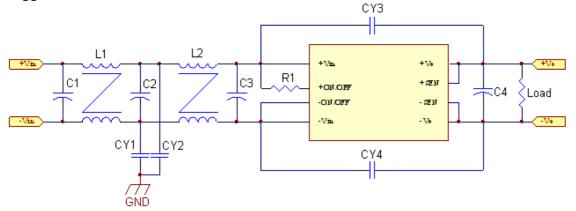
Output voltage turns on when current is made to through On/Off terminals which can be reached by opening or closing the switches. The maximum current through the On/Off pin is 10mA, setting the resistor value to avoid the maximum current through the On/Off pins.

(A) Controlling the On/Off terminal from the input side, recommend R1 value is 30K (0.5W) for 48Vin and 15K (0.25W) for 24Vin.

(B) Controlling the ON/OFF terminal from the output side, Recommend R2 value is 5.1k (0.1W).



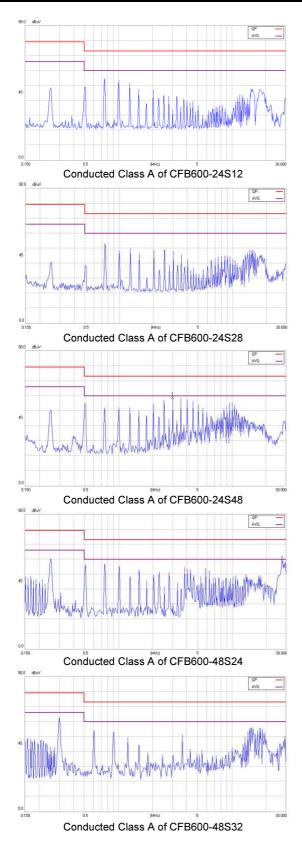
7. Safety & EMC

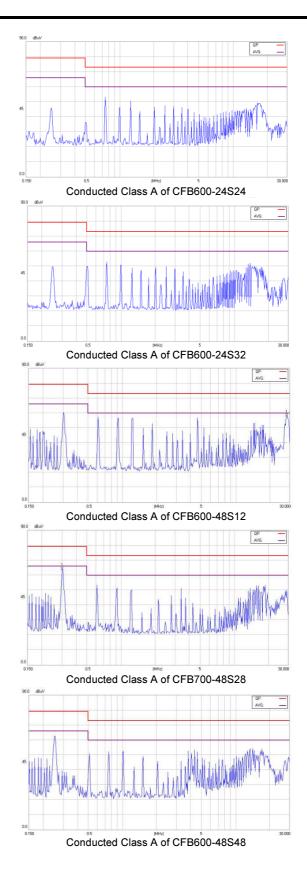

7.1 Input Fusing and Safety Considerations

The CFB600 series converters have no internal fuse. In order to achieve maximum safety and system protection, always use an input line fuse. We recommended a 60A time delay fuse for 24V_{in} models, and 30A for 48V_{in} models. It is recommended that the circuit have a transient voltage suppressor diode (TVS) across the input terminal to protect the unit against surge or spike voltage and input reverse voltage (as shown).

7.2 EMC Considerations

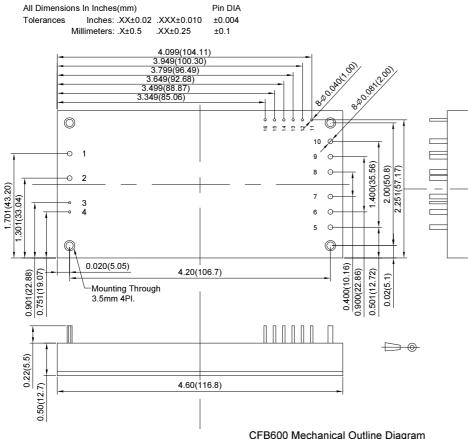
Suggested Circuits for Conducted EMI Class A




(1) EMI and conducted noise meet EN55032 Class A specifications:

Model No.	C1	C2	C3	CY1/CY2	CY3/CY4	C4	L1	L2	R1
CFB600-24S12	1000uF/50V	2.2uF/100V	1000uF/50V	0.1uF	NC	470uF/100V+10uF/50V	Short	1mH	15K
CFB600-24S24	1000uF/50V	2.2uF/100V	1000uF/50V	0.1uF	NC	470uF/100V+10uF/50V	Short	1mH	15K
CFB600-24S28	1000uF/50V	2.2uF/100V	1000uF/50V	0.1uF	NC	470uF/100V+10uF/50V	Short	1mH	15K
CFB600-24S32	1000uF/50V	2.2uF/100V	1000uF/50V	0.1uF	NC	470uF/100V+10uF/50V	Short	1mH	15K
CFB600-24S48	1000uF/50V	2.2uF/100V	1000uF/50V	0.1uF	NC	470uF/100V+10uF/50V	Short	1mH	15K
CFB600-48S12	NC	470uF/100V	470uF/100V	10000pF	10000pF*2	470uF/100V	Short	2mH	30K
CFB600-48S24	NC	470uF/100V	470uF/100V	10000pF	10000pF*2	470uF/100V	Short	2mH	30K
CFB700-48S28	NC	470uF/100V	470uF/100V	10000pF	10000pF*2	470uF/100V	Short	2mH	30K
CFB600-48S32	NC	470uF/100V	470uF/100V	10000pF	10000pF*2	470uF/100V	Short	2mH	30K
CFB600-48S48	NC	470uF/100V	470uF/100V	10000pF	10000pF*2	470uF/100V	Short	2mH	30K

Note: 1000uF/50V is NIPPON CHEMI-CON KY series aluminum capacitors, 470uF/100V is Nichicon PS(M) series aluminum capacitors, Y1, CY2, CY3 & CY4 is Y1 capacitors, other capacitors is ceramic capacitors 2220 size. Inductor core material is VAC W523, 1mH is 1.2mm*2 6T, 2mH is 1.5mm*1 8T.I


8. Part Number

Format: CFB600 - II X 00 L

Parameter	Series	Nominal Input Voltage	Number of Outputs	Output Voltage	Remote ON/OFF Logic	
Symbol	CFB600	II	Х	00	L	
Value	CFB600 CFB700	24: 24 Volts 48: 48 Volts	S: Single	12: 12 Volts 24: 24 Volts 28: 28 Volts 32: 32 Volts 48: 48 Volts	None: Negative P: Positive	

9. Mechanical Specifications

9.1 Mechanical Outline Diagrams

PIN CONNECTIONS				
PIN NUMBER	FUNCTION			
1	-V Input			
2	+V Input			
3	-On/Off			
4	+On/Off			
5-7	+V Output			
8-10	-V Output			
11	-S			
12	+S			
13	TRIM			
14	PC/NC			
15	IOG			
16	AUX			

CFB600 Mechanical Outline Diagram

Headquarters:

14F, No.306, Sec.4, Hsin Yi Rd. Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852 E-mail: sales@cincon.com.tw Web Site: https://www.cincon.com

CINCON ELECTRONICS CO., LTD. Factory:

No. 8-1, Fu Kung Rd. Fu Hsing Industrial Park Fu Hsing Hsiang, Chang Hua Hsien, Taiwan Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon North America:

2.40(61.0)

1655 Mesa Verde Ave. Ste 180 Ventura, CA 93003 Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com